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Prediction of the conditions for cavitation onset and thus cavitative erosion is quite important for de-
signing and using hydrotechnical equipment and various types of hydraulic machines. The problem of de~
termining the cavitation sensitivity of an airfoil was reduced to an integral Fredholm equation of the second
kind in [1]. It was suggested there that cavitation arises at that part of the profile where the fluid velocity
reaches its maximum value. It is also known [5] that conditions for the onset of cavitation are governed
by both the geometric characteristics of the object and by the physical properties of the liquid (viscosity,
surface tension, amount of dissolved gas, etc.). Below we take up the problem of the flow around a protu-
berance onthe wall of a planar channel, determining the dependence of the critical number for cavitation
onset on the protuberance height, the channel height, and the slope of the leading face of the protuberance.
All the physical properties of the liquid are assumed constant, so only the geometric characteristics of
the protuberance change,

We assume that the flow around a corner is of a local nature and that flow does not occur around an
infinitely sharp protuberance. Actually, a constant-pressure separation line forms immediately beyond
a corner in a liquid flow, and the radius of curvature of this line does not depend or does not strongly de-
pend on the protuberance geometry. We thus assume that the radius of curvature of a streamline near a
corner, unknown beforehand, remains constant while the other flow characteristics change.

This assumption is justified below by a comparison of the calculated and experimental results.

1. Using the model of [2] for the flow of a cavitating liquid at the initial stage of the development of
cavitation, we can determine the size of the seat of cavitative erosion for flow of a liquid around a polygon-
al object. The size of the seats of erosion predicted by this theory turns out to be in good agreement with
experiment. However, since the contour of the object is constructed from straight line segments, the cav-
itation which arises near corners protruding into the flow should theoretically disappear only at an infinite
cavitation number

w2 (1.1)
where p, p, v, and py are the pressure, density, velocity, and vapor pressure of the liquid, respectively.
This theoretical prediction is contradicted by experimental data showing finite critical numbers for the
onset and disappearance of cavitation during flow of a liquid around a polygonal object. This discrepancy
is attributed primarily to the difference between the geometry of a real flow and the model of separation-
free flow around a corner. Actually, the liquid immediately beyond the corner is separated from the sur-
face, and a region filled with a relatively slowly moving liquid in eddying motion is formed.

To determine the flow structure near a protuberance, we carried out experiments in a hydraulic pan
with a rectangular protuberance 40 mm high; the channel width was 100 mm. At a flow velocity of V=0.12
m/sec, the Reynolds number NRe corresponding to the protuberance height was ~5000. The water in the

pan was dyed with black ink, and the flow was emphasized by a fine aluminum powder floating on the water
surface.

Moscow. Translated from Zhurnal Prikladnoi Mechaniki i Tekhnicheskoi Fiziki, No. 4, pp. 172-175,
July-August, 1970, Original article submitted December 15, 1969.

©1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

685



Fig. 2

Visual observation and photographs of the flow show that the flow around the protuberance involves
the formation of free eddies filling the separated-flow region. The boundary of the main flow in the eddy
region is essentially steady and is clearly observable (Fig. 1). In the experiments whose results are de-
scribed below, carried out in a study of the onset of cavitation at a protuberance in the working chamber
of a hydrodynamic tube, the Ng, values were approximately two orders of magnitude greater than in the
hydraulic pan. However, as the dependence of the Strouhal number on the Reynolds number shows, the eddy
structure of the separation zone for a bluff object [3, 4] is retained during flow around the model in the tube.
As NRe increases, the eddies decrease in size, and the boundary separating the two flow regions becomes
smoother,

In discussing flow around a protuberance at the bottom of a planar channel, we neglect diffusion of
the eddy motion from the separation zone into the main potential flow, and we assume the boundary between
these regions to be a rigid, impenetrable wall, For a comparatively short distance along the channel, be-
tween cross sections A-A and B-B (Fig. 2), this assumption holds quite well, Then, using conformal map-
ping, we consider an infinite channel at whose ends, 1-1 and 2-2 (Fig. 3), the same hydrodynamic conditions
hold as in cross sections A-~A and B-B (Fig. 2), respectively. We assume that the flow between the sep-
aration region and the potential flow consists of a semiinfinite rectilinear segment 2-3 and a curvilinear
region 3-4, whose shape is to be determined. The other flow boundaries are formed by the rigid, impen~
etrable walls of the channel.

2, On the basis of the above discussion, we determine the conditions for the onset of cavitation during
flow of an ideal incompressible liquid around a protruding step having a rounded edge. Figure 3 shows the
potential flow on the plane of the complex variable z =x+iy. At the boundaries of the flow region we have
the following conditions.

Cavitation bubbles form and grow at edge 3-4 earlier than anywhere else in the flow. As in [2], we
assume that at that part of the flow boundary at which cavitation bubbles arise,the pressure is constantand
equal to the vapor pressure.

We take as the critical condition for the onset or disappearance of cavitation the situation in which
the cavitation zone covers entire edge 3-4, i.e.,

p = pp at 3-4. (2.1)

For a relatively small radius of curvature of edge 3-4, this definition of the critical eavitation num-~
ber is approximately equal o the cavitation number determined experimentally from the acoustic emission
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Fig. 4 point 3. To solve the problem we conformally map the real-

flow region on the z plane into this sector on the { plane. We
first conformally map sector 1-2-3-4-5-1 on the { plane into the upper half-plane of the auxiliary complex
variable t (Fig. 3¢} by means of the function
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Here we have
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The constant u, is determined in the course of the solution.

The t upper half-plane is mapped conformally onto the polygon 1-2-2'-4-5-1 of the z plane by means
of the Christoffel-Schwariz integral

_ Sw_dz_.___
z————00 C— (-t (2.3}

Using an approximate conformal mapping, we convert the t upper half-plane into the curvilinear poly-
gon 1-2-3-4-5-1 in the z plane, using the function
t
ey (t—t
zx»—cg b’ (2.4)

g - £5)" {t — 13)

where the constants ¢ and y are governed by the geometric dimensions of the curvilinear polygon. Integral
(2.4) determines the shape of edge 3-4 for t; =t=0.

We circumvent point 1 on the t plane along an infinitesimally small semicircle, and we civcumvent
point 2 along an infinitely large semicircle. From Eq. (2.4) we find two equations for the unknown constants:

8* v {— )

H=cn )"

' H—~h—R{ —cosan)y=cn(l+7), (2.5)

where R is the characteristic radius of curvature of edge 3-4. The other equations necessary can be found
from the correspondence of points 3 on the { and z planes; from Fig. 3 we see that
73 == — R sinan — iR ({ — cos an) (2.8)

Substituting Eqgs. (2.2) and (2.6) into Eq. (2.4), we find two other real equations for the unknowns ¢, v, u,,
and R as functions of the critical cavitation number 4:
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System (2.5), (2.7) can be reduced to a single equatmn for uy*
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The integrals f and g in Eq. (2.8) can be expressed in terms of elementary functions for rational o
values. For practical calculations, however, it is simpler to calculate them directly numerically.

Solving Eq. (2.8) on a computer, we find the dependence of the critical cavitation mumber on the char-
acteristic radius of curvature R of the edge. The results calculated for several @ values and for h/H=0.2
are shown in Fig. 4a. The curves here have the same feature; i.e., as R~ 0, w—«, However, this feature
does not contradict the experimental data showing finite critical cavitation numbers during flow around cor-
ners, since separation~free flow around a sharp edge (R~0) can occur only at very small NRe ("creeping
flow"™), quite uncharacteristic of cavitating flow. Assuming R=const over some o range and using the data
of Fig. 4a, we can construct the =y (@) dependence (Fig. 4b).

3. An experimental study was made of the =y (@) dependence for flow around a protuberance in the
working chamber of a hydrodynamic tube. The working chamber has a cross section of 20X 100 mm, and
the protuberance height is 20 mmm, Four models having angles @ =0.50, 0.33, 0.25, and 0.17 were tested.
The liquid velocity before reaching the model was v =14.2 m/sec, the same in all the experiments,

The onset of cavitation was determined by an acoustic method, from the appearance of the charac-
teristic clicking noise. To eliminate the error in the critical cavitation number y arising because of "hys-
teresis," we carried out "forward" and "reverse" experiments, by reducing the pressure in the equalizing
reservoir of the tube and by increasing it until a certain cavitation state, marked by the appearance of the
characteristic noise, was reached. The cavitation number was determined from (Fig. 2)

Pa—Pr—P : :
R=—— , g=05pv 4% (3.1)

where pr is the atmospheric pressure and py is the vapor pressure.

The points in Fig. 4b show the experimental critical cavitation numbers ¢ = (@) determined. A com~
parison of the experimental and calculated y values shows good agreement for o =0.4. For 0.4<a =0.5,
the theoretical curve deviates from the experimental points, apparently because of a violation of the con~
dition R =const at large o {constancy of R was assumed for the construction of the curve in Fig. 4b).
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