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Prediction of the conditions for cavitation onset and thus cavitative erosion is quite important for de- 
signing and using hydrotechnical equipment and various types of hydraulic machines. The problem of de- 
termining the cavitation sensitivity of an airfoil was reduced to an integral Fredholm equation of the second 
kind in [1]. It was suggested there that cavitation arises at that part of the profile where the fluid velocity 
reaches its maximum value. It i s also known [5] that conditions for the onset of cavitation are governed 
by both the geometric characteristics of the object and by the physical properties of the liquid (viscosity, 
surface tension, amount of dissolved gas, etc.). Below we take up the problem of the flow around a protu- 
berance on the wall of a planar channel, determining the dependence of the critical number for cavitation 
onset on the protuberance height, the channel height, and the slope of the leading face of the protuberance. 
All the physical properties of the liquid are assumed constant, so only the geometric characteristics of 
the protuberance change. 

We assume that the flow around a corner is of a local nature and that flow does not occur armmd an 
infinitely sharp protuberance. Actually, a constant-pressure separation line forms immediately beyond 
a corner in a liquid flow, and the radius of curvature of this line does not depend or does not strongly de- 
pend on the protuberance geometry. We thus assume that the radius of curvature of a streamline near a 
corner, unknown beforehand, remains constant while the other flow characteristics change. 

This assumption is justified below by a comparison of the calculated and experimental results. 

1. Using the model of [2] for the flow of a cavitating liquid at the initial stage of the development of 
cavitation, we can determine the size of the seat of cavitative erosion for flow of a liquid around a polygon- 
al object. The size of the seats of erosion predicted by this theory turns out to be in good agreement with 
experiment. However, since the contour of the object is constructed from straight line segments, the cav- 
itation which arises near corners protruding into the flow should theoretically disappear only at an infinite 
cavitation number 

2 (p -- Pv) 
• - -  p v 2  (1.1) 

where p, p, v, and Pv are the pressure, density, velocity, and vapor p r e s s u r e  of the liquid, respectively. 
This theoretical prediction is contradicted by experimental data showing finite critical numbers for the 
onset and disappearance of cavitation during flow of a liquid around a polygonal object. This discrepancy 
is attributed primarily to the difference between the geometry of a real flow and the model of separation- 
free flow around a corner. Actually, the liquid immediately beyond the corner is separated from the sur- 
face, and a region filled with a relatively slowly moving liquid in eddying motion is formed. 

To determine the flow structure near a protuberance, we carried out experiments in a hydraulic pan 
with a rectangular protuberance 40 mm high; the channel width was 100 ram. At a flow velocity of V = 0.!2 
m/see, the Reynolds number NRe corresponding to the protuberance height was .~5000. The water in the 
pan was dyed with black ink, and the flow was emphasized by a fine aluminum powder floating on the water 
surface. 
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Visual  observa t ion  and photographs of the flow show that  the flow around the p ro tuberance  involves 
the fo rmat ion  of f r ee  eddies fil l ing the sepa ra ted - f low region.  The boundary of the main  flow in the eddy 
region is essen t ia l ly  s teady and is c l ea r ly  observab le  (Fig. 1). In the expe r imen t s  whose r e su l t s  a re  de-  
s c r i bed  below, c a r r i e d  out in a study of the onset  of cavi tat ion at  a p ro tuberance  in the working chamber  
of a hydrodynamic  tube, the NRe values  we re  approx imate ly  two o rde r s  of magnitude g r e a t e r  than in the 
hydraulic  pan. However ,  as the dependence of the Strouhal number  on the Reynolds number  shows, the eddy 
s t ruc tu re  of the separa t ion  zone for  a bluff object  [3, 4] is r e ta ined  during flow around the model  in the tube. 
As NRe i n c r e a s e s ,  the eddies dec rea se  in s ize ,  and the boundary separa t ing  the two flow regions  becomes  
smoo the r .  

In d iscuss ing flow around a p ro tube rance  at  the bot tom of a p lanar  channel , we neglect  diffusion of 
the eddy motion f r o m  the separa t ion  zone into the main  potential  flow, and we a s s u m e  the boundary between 
these  reg ions  to be a r igid,  impene t rab le  wall .  Fo r  a compara t ive ly  shor t  dis tance along the channel,  be -  
tween c r o s s  sect ions  A-A and B-B (Fig. 2), this assumpt ion  holds quite well .  Then, using conformal  m a p -  
ping, we cons ider  an infinite channel at whose ends, 1-1 and 2-2 (Fig. 3), the s ame  hydrodynamic  conditions 
hold as  in c ro s s  sec t ions  A-A and B-B (Fig. 2), r e spec t ive ly .  We a s s u m e  that the flow between the s e p -  
a ra t ion  region and the potential  flow cons is t s  of a semiinf ini te  r ec t i l i nea r  segment  2-3 and a curv i l inear  
region 3-4,  whose shape is to be de te rmined .  The other  flow boundar ies  a r e  f o r m e d  by the r igid,  impen-  
e t rab le  walls  of the channel.  

2. On the bas i s  of the above discuss ion,  we de te rmine  the conditions for  the onse t  of cavi ta t ion during 
flow of an ideal i ncompres s ib l e  liquid around a prot ruding s tep having a rounded edge. F igure  3 shows the 
potent ial  flow on the plane of the complex va r i ab l e  z = x + i y .  At the boundar ies  of the flow region we have 
the following condit ions.  

Cavitat ion bubbles f o r m  and grow at  edge 3-4 e a r l i e r  than anywhere  e l s e  in the flow. As in [2], we 
a s s u m e  that  a t  that p a r t  of the flow boundary at  which cavi ta t ion bubbles a r i se , the  p r e s s u r e  is constant  and 
equal  to the vapo r  p r e s s u r e .  

We take as the c r i t i ca l  condition for  the onset  or  d i sappearance  of cavi tat ion the si tuation in which 
the cavi ta t ion zone cove r s  en t i re  edge 3-4,  i .e. ,  

P = Pv at 3-~. (2.1) 

For  a r e l a t ive ly  sma l l  radius  of cu rva tu re  of edge 3-4,  this definition of the c r i t i ca l  cavi tat ion num-  
ber  is approx imate ly  equal to the cavi ta t ion number  de te rmined  exper imenta l ly  f r o m  the acoust ic  emi s s ion  
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of the l i qu id  and  f r o m  the c o r r e s p o n d i n g  a p p e a r a n c e  of i n -  
d iv idua l  c av i t a t i on  bubb les  a t  some  point  of r e g i o n  3 -4 .  

In the plane of the hodograph ~= dw/dz ,  w h e r e  w (z) 

is  the complex  flow po ten t ia l ,  the r e a l - f l o w  r e g i o n  1 - 2 - 3 - 4 - 5 - 1  

c o r r e s p o n d s  to the s e c t o r  of a c i r c l e  of r a d i u s  v 3 sub t ended  
by an angle  t~Tr (Fig.  3b). Here  v 3 is  the l i qu id  ve loc i t y  at  
poin t  3. To  so lve  the p r o b l e m  we c o n f o r m a l l y  ma p  the r e a l -  
flow r e g i o n  on the z p lane  into this  s e c t o r  on the ~ p l ane .  We 

f i r s t  c o n f o r m a l l y  map  s e c t o r  1 - 2 - 3 - 4 - 5 - 1  on the ~ p lane  into the upper  ha l f -p l ane  of the a u x i l i a r y  complex  

v a r i a b l e  t (F ig .  3c) by m e a n s  of the func t ion  

- + . ( 2 . 2 )  

Here  we have 

2 i 
t2~c~, ta=: t - - u ~  z'  t 4 ~ O ,  ts~---~__ug, 

i + (• + l )  1I~ 
ul = 2 (x -~ t) 'I=~ ' v3~ = vl2 (• "4- t). 

The  c o n s t a n t  u~ is  d e t e r m i n e d  in the c o u r s e  of  the so lu t ion .  

The t uppe r  h a l f - p l a n e  is  mapped  c o n f o r m a l l y  onto the polygon 1 - 2 - 2 ' - 4 - 5 - 1  of the z p l ane  by m e a n s  
of the C h r i s t o f f e l - S c h w a r t z  i n t e g r a l  

t 
t~ t~dt  

(t -- t~) ~ (t -- tt) (2.3) 
0 

Using  an  a p p r o x i m a t e  c o n f o r m a l  mapp ing ,  we c onve r t  the t uppe r  ha l f -p l ane  into the c u r v i l i n e a r  po ly -  
gon 1 - 2 - 3 - 4 - 5 - 1  in  the z p l ane ,  u s i n g  the func t ion  

t 

t t ~ + ~ ( t - t ~ )  ~ 
z . ~ - - c  ( t _ _ t s ) ~ ( t _ _ t l )  dr, (2.4) 

0 

w h e r e  the cons t an t s  e and  y a r e  g o v e r n e d  by the g e o m e t r i c  d i m e n s i o n s  of the c u r v i l i n e a r  polygon.  Lutegrat  
(2.4) d e t e r m i n e s  the shape  of edge 3 -4  for  t3-<t-<0.  

We c i r c u m v e n t  po in t  1 on the t p lane  a long  an  i n f i n i t e s i m a U y  s m a l l  s e m i c i r c l e ,  and  we c i rcumv-ent  
point  2 a long an  in f in i t e ly  l a r g e  s e m i c i r c l e .  F r o m  Eq. (2.4) we f ind two equa t ions  for  the unknown c o n s t a n t s :  

g = cn tl: + T (t~ -- ta) ~ 
(tx -- t~) ~ , H -- h -- R (t -- cos an) = cn (i + ~), (2.5) 

w h e r e  R is  the c h a r a c t e r i s t i c  r a d i u s  of c u r v a t u r e  of edge 3 -4 .  The o ther  equa t ions  n e c e s s a r y  c a n  be found 
f r o m  the c o r r e s p o n d e n c e  of po in t s  3 on the t a nd  z p l a n e s ;  f r o m  Fig .  3 we see  tha t  

z 3 = -- R sin an -- iR (i -- cos an) (2.6) 

Subs t i tu t ing  E q s .  (2.2) and  (2.6) in to  Eq.  (2.4), we f ind  two other  r e a l  equa t ions  for  the unknowns  c, 2/, u2~ 
and  R as  func t ions  of the c r i t i c a l  c av i t a t i on  n u m b e r  n :  

R sin a.~ = cf + c?g cos czn, R (1 -- cos c~) = c?g sin an 

! xadx ! (~-- x)adx (2.7) 
i = (~ + t ~ ) - ~  + t l ) '  g = , ~ = -  t . .  (~ + t~) ~ (= + tl) 

S y s t e m  (2,5), (2.7) can  be r e d u c e d  to a s ing le  equa t ion  for  u2: 

H H R ~(al--a~)R(l--cosan)h] sin r ~- -~- [ - ~  -- t -- --h (t -- cos ctn)] a~ ~--- O. 

R ( H / h ~ l ) ( a x + a 2 ] t g ) - - ( H / h ) ( l - ~ f / g )  
h --  (i -- cos an) (al + a~//g) 

f a ~ f t l - t . k ~  

(2.8) 
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The integrals  f and g in Eq. (2.8) can be exp re s sed  in t e rm s  of e lementa ry  functions for  rat ional  
va lues .  For  p rac t ica l  calculations,  however,  it is s impler  to calculate them direct ly  numerical ly .  

Solving Eq. (2.8) on a computer ,  we find the dependence of the c r i t i ca l  cavitation number on the char -  
ac te r i s t i c  radius  of curva ture  R of the edge,  The r e su l t s  calculated for  severa l  ~ values  and for  h /H=0 .2  
a re  shown in Fig. 4a. The curves  he re  have the same feature;  i .e . ,  as R-~ 0, ~ - - ~ .  However,  this feature  
does not cont radic t  the exper imenta l  data showing finite c r i t i ca l  cavitat ion numbers  during flow around co r -  
ne r s ,  since sepa ra t ion - f r ee  flow around a sharp edge (R~0) can occur  only at ve ry  small  NRe ("creeping 
flown), quite uncharac te r i s t i c  of cavitating flow. Assuming R =const  over  some ~ range and using the data 
of Fig. 4a, we can cons t ruc t  the x = x  (~) dependence (Fig. 4b). 

3. An exper imenta l  study was made of the x = x  (~) dependence for  flow around a pro tuberance  in the 
working chamber  of a hydrodynamic tube. The working chamber  has a c ross  sect ion of 20x 100 ram, and 
the protuberance  height is 20 mm. Four  models  having angles a =0.50, 0.33, 0.25, and 0.17 were  tested.  
The liquid veloci ty  before  reaching the model was v =14.2 m / s e c ,  the same in all the exper iments .  

The onset  of cavitat ion was de te rmined  by an acoustic  method, f rom the appearance of the charac -  
t e r i s t i c  clicking noise.  To el iminate the e r r o r  in the c r i t i ca l  cavitat ion number x a r i s ing  because o f " h y s -  
t e r e s i s , "  we c a r r i e d  out " forward"  and " r e v e r s e "  exper iments ,  by reducing the p r e s su re  in the equalizing 
r e s e r v o i r  of the tube and by increasing it until a cer ta in  cavitation state,  marked  by the appearance of the 
cha rac t e r i s t i c  noise,  was reached.  The cavitation number  was de termined f rom (Fig. 2) 

P A  - -  PT ~ Pv 
u = q , q = O,5pvAz, (3.1) 

where  P T i S  the a tmospher ic  p r e s s u r e  and Pv is the vapor  p r e s s u r e .  

The points in Fig. 4b show the exper imenta l  c r i t i ca l  cavitation numbers  ~ =~  (a) determined.  A com-  
par i son  of the exper imenta l  and calculated x values  shows good agreement  for  c~ -<0.4. For  0 .4<a  -<0.5, 
the theoret ica l  curve  deviates f rom the exper imenta l  points,  apparent ly because of a violation of the con-  
dition R = coast  a t  la rge  a (constancy of R was a s sumed  for  the construct ion of the curve  in Fig. 4b). 
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